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In 1973, Küsters and de Mayo succeeded in the first synthesis
of a stableR-dithione, 4,4′-bis(p-dimethylamino)dithiobenzil (1).1,2

The dark red crystalline1 has thes-trans structure2 in the solid,
but exists in solution as an equilibrium mixture ofR-dithione 2
and its valence tautomer 1,2-dithiete3. The position of the
dithione-dithiete equilibrium depends on the substituent attached
to the sp2 carbon atom.3,4 Thus, electron-donating substituents
stabilize dithiones as is true for1, while electron-withdrawing
substituents favor dithietes as is evidenced by successful preparation
of dithietes45 and5.6 On the other hand, several 1,2-dithietes, which
are stabilized by bulky alkyl substituents, are also known.7,8 Typical
examples are highly stable6 and 7, whose convenient synthesis
was developed by us.7 Here, we report the synthesis, isolation, and
characterization of the first aliphaticR-dithiones, di(1-adamantyl)-
ethanedithione (8) and di-tert-butylethanedithione (9), the valence
tautomers of6 and7, respectively.2

Recently, we developed a convenient synthesis of thiirene 1-oxide
10 and related derivatives.9 With the expectation of obtaining
thiirene 1-sulfide11or its desulfurizaton product12, 10was treated
with Lawesson’s Reagent (LR) in CH2Cl2 at room temperature.10

The reaction took place with quick development of violet coloration.
The reaction mixture was treated after 15 min to provide thermally
labile violet crystals of811 in 20% yield (65% yield based on the
UV/vis spectral data). The13C NMR spectrum of8 showed the
single CdS carbon peak atδ 269.7, while the UV/vis spectrum
exhibited a weak absorption at 520 nm (ε 124) characteristic of
the CdS group.11 The FAB mass spectrum gave the molecular ion
peak at m/z 358.11,12 DFT calculations (B3LYP/6-31G* level)
predicted that the IR spectrum of8, based on the optimized
geometry, would show the intense absorption at 1118 cm-1 that
originates from the asymmetrical vibration associated with the two
CdS bonds, while the observed spectrum showed an intense
absorption at 1149 cm-1.13,14 Meanwhile, the same calculations
predicted that the Raman spectrum would show an intense band at
1116 cm-1 that originates from the symmetrical vibration of the
two CdS bonds, while the observed spectrum showed an intense
band at 1148 cm-1.13,14

Dithione9 was also formed in about 20% yield by treatment of
thiirene 1-oxide13 with LR, although it was not isolated in pure
form.15

We thought initially that the unexpected formation of8 would
be explained by reaction of carbene14a (ring-opening product of
12) or isomeric biradical14bwith activated sulfur species generated

during the reaction. Reportedly14a (or 14b) is trapped by
cycloaddition with CS2 to give dithiole-2-thione15.16 The reaction
was therefore carried out in CS2 as the solvent. Unexpectedly,
however, the reaction gave8 in a better yield (46% isolated yield),
and not the expected15. On the other hand, the reaction in the
presence of dimethyl acetylenedicarboxylate (DMAD), a trapping
agent ofR-keto carbenes,17 in CS2 gave congested thiophene16 in
51% yield. A separate experiment revealed that DMAD does not
react with8 to give 16.

Thus, a tentative mechanism that involves the formation of
sulfonium ion17 and then sulfur ylide18 is proposed.18 would
produce8 with a highly twisted structure by extrusion of20, while
reaction of17 with DMAD would produce19, which finally leads
to the formation of16.

The violet crystals of8 turn faint-yellow at 151-153 °C and
melt at 194-196 °C due to isomerization to dithiete6, mp 197-
198 °C. It also isomerizes to6 in solution quantitatively. The
progress of the isomerization was thus monitored by1H NMR in
dilute CDCl3 solution (0.014 M) to determine the kinetic parameters.
The reaction is first order in8 and gave the rate constants of (6.13
( 0.08)× 10-6, (2.33( 0.10)× 10-5, and (1.34( 0.03)× 10-4

s-1 at 295, 308, and 328 K, respectively, thus providing kinetic
parameters of∆Hq ) 17.6( 0.2 kcal mol-1, ∆Sq ) -23.0( 0.7
cal K-1 mol-1, and∆Gq

298 ) 24.4( 0.4 kcal mol-1. The∆Sq value
of the isomerization is comparable to that of the cyclization of22
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to 23,18 -15.6( 1.7 cal K-1 mol-1, rather than that of2 to 3, 0.5
( 0.9 cal K-1 mol-1.1b,19

Because, despite numerous attempts, we could not obtain good
single crystals of8 suitable for X-ray crystallographic analysis, the
optimized structure was determined by DFT calculations (Figure
1). The two adamantyl groups are twisted with a large dihedral
angle of 106.2°. Reportedly the two adamantyl groups in6 are
twisted only by about 6.0° in the crystalline state.20,21 Thus, the
isomerization of8 to 6 would require that the two adamantyl groups
become nearly coplanar withs-cis conformation at the transition
state against increasing steric repulsion; thes-trans coplanar
conformation of8 is less stable by 34.7 kcal mol-1 than the
optimized twisted conformation. This would be the very reason
that8 is isolated in pure form. The calculations also predicted that
8 is less stable than the optimized structure of6 by 2.69 kcal
mol-1.22

The oxidation of6 with m-chloroperbenzoic acid (MCPBA, 3
equiv), where the final products are furnished by ring-opening of
bis-sulfoxide intermediate25, produces a mixture of bis-sulfines,
24EE, 24EZ, and24ZZ, in a ratio of ca. 30:10:1.23 On the other
hand, the oxidation of8 with MCPBA (3 equiv) in CH2Cl2, which
proceeds through stepwise oxidation of the CdS groups, furnished
24EE, 24EZ, and24ZZ in 31%, 27%, and 41% yields (thus in the
ratio 31:27:41), respectively.

Treatment of 8 with two molar amounts of ethylenebis-
(triphenylphosphine)platinum(0) (26) gave a 1:1 dithiolene complex
27 in 45% yield; no expected bis-platinum complex28was formed.
The same complex27was also produced in 48% yield by treatment
of 6 with 26.
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Figure 1. Optimized structure of8.
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